Contents

Example 18 - Features of Eigenvalues and Eigenvectors - Anisotropic Bearings

This example is based on Example 5.9.2 from [Friswell, 2010].

Anisotropic Bearings. This system is the same as that of Example
5.9.1 except that the isotropic bearings are replaced by anisotropic bearings.
Both bearings have a stiffness of 1 MN/m in the x direction and 0.8 MN/m in the
y direction. Calculate the eigenvalues and mode shapes at 0 and 4,000 rev/min
and plot the natural frequency map for rotational speeds up to 4,500 rev/min.​
import ross as rs
import numpy as np
import plotly.graph_objects as go
from IPython.display import display
Q_ = rs.Q_
steel = rs.Material("steel", E=211e9, G_s=81.2e9, rho=7810)
L = 0.25
N = 6
idl = 0
odl = 0.05

shaft = [rs.ShaftElement(L=L, idl=idl, odl=odl, material=steel) for i in range(N)]
bearings = [
    rs.BearingElement(n=0, kxx=1e6, kyy=0.8e6, cxx=0, scale_factor=2),
    rs.BearingElement(n=len(shaft), kxx=1e6, kyy=0.8e6, cxx=0, scale_factor=2),
]
disks = [
    rs.DiskElement.from_geometry(
        n=2, material=steel, width=0.07, i_d=odl, o_d=0.28, scale_factor="mass"
    ),
    rs.DiskElement.from_geometry(
        n=4, material=steel, width=0.07, i_d=odl, o_d=0.35, scale_factor="mass"
    ),
]

rotor = rs.Rotor(shaft_elements=shaft, disk_elements=disks, bearing_elements=bearings)
rotor.plot_rotor()