# Example 3 - Isotropic Bearings, asymmetrical rotor.ΒΆ

In this example, we use the rotor seen in Example 5.9.1 from . A 1.5-m-long shaft, with a diameter of $$0.05 m$$. The disks are keyed to the shaft at $$0.5$$ and $$1 m$$ from one end. The left disk is $$0.07 m$$ thick with a diameter of $$0.28 m$$; the right disk is $$0.07 m$$ thick with a diameter of $$0.35 m$$. For the shaft, $$E = 211 GN/m^2$$ and $$G = 81.2 GN/m^2$$. There is no internal shaft damping. For both the shaft and the disks, $$\rho = 7,810 kg/m^3$$. The shaft is supported by identical bearings at its ends.

These bearings are isotropic and have a stiffness of $$1 MN/m$$ in both the x and y directions. The bearings contribute no additional stiffness to the rotational degrees of freedom and there is no damping or cross-coupling in the bearings.

import ross as rs
import numpy as np

# Classic Instantiation of the rotor
shaft_elements = []
bearing_seal_elements = []
disk_elements = []
for i in range(6):
shaft_elements.append(rs.ShaftElement(L=0.25, material=steel, n=i, idl=0, odl=0.05))

disk_elements.append(
rs.DiskElement.from_geometry(n=2, material=steel, width=0.07, i_d=0.05, o_d=0.28)
)

disk_elements.append(
rs.DiskElement.from_geometry(n=4, material=steel, width=0.07, i_d=0.05, o_d=0.35)
)
bearing_seal_elements.append(rs.BearingElement(n=0, kxx=1e6, kyy=1e6, cxx=0, cyy=0))
bearing_seal_elements.append(rs.BearingElement(n=6, kxx=1e6, kyy=1e6, cxx=0, cyy=0))

rotor591c = rs.Rotor(
shaft_elements=shaft_elements,
bearing_elements=bearing_seal_elements,
disk_elements=disk_elements,
)

rotor591c.plot_rotor()