Tutorial - Stochastic ROSS
Contents
Tutorial - Stochastic ROSS#
This is a basic tutorial on how to use STOCHASTIC ROSS - a ROSS’ module for stochastic rotordynamics analysis. Before starting this tutorial, be sure you’re already familiar with ROSS library.
If you’ve already used ROSS, you’ve noticed the graphs present deterministic results, considering a set of parameters. In other words, the model always produce the same output from a given starting condition or initial state. In STOCHASTIC ROSS, the concept is different, and we’ll work it stochastic processes.
A stochastic process is defined as a indexed collection of random variables defined on a common probability space (\(\Omega\), \(\mathcal{F}\), \(P\)} where \(\Omega\) is a sample space, \(\mathcal{F}\) is a \(\sigma\)-algebra, and \(P\) is a probability measure. The index is often assumed to be time.
This new module allows you to work with random variables applied to the ROSS’ functions. Basically, any element or material can be receive a parameter considered random. Moreover, some methods are also able to receive a random variable (random force, random unbalance…). It means that a parameter, once assumed deterministic (int or float in python language), now follows a distribution (list or array), like uniform distribution, normal distribution, etc.
As consequence, plots do not display deterministic results anymore. Instead, plots shows the expectation \(E(X_t(t))\) (or mean) for a stochastic process and intervals of confidence (user choice).
Where:
\(X_t\) is the stochastic process;
\(t\) is the index time
import ross as rs
import ross.stochastic as srs
import numpy as np
Random Sampling#
Arrays of random numbers can be creating using numpy.random
package.
numpy.random
has a large set of distributions that cover most of our needs to run STOCHASTIC ROSS.
In this LINK you can find a list of numpy random numbers generators.
When using STOCHASTIC ROSS, all the randam variables must have the same size.
Classes Name#
It’s important to highlight that in STOCHASTIC ROSS, the classes name are the same than ROSS, but with a “ST_” prefix to differ.
ST_Material#
There is a class called ST_Material to hold material’s properties, where:
ST_Material
allows you to create a material with random properties. It creates an object containing a generator with random instances of rs.Material
.
The instantiation is the same than rs.Material
class. It has the same parameters and assumptions. The only difference is that you are able to select some parameters to consider as random and instantiate it as a list.
The parameters which can be passed as random are:
rho
- DensityE
- Young’s modulusG_s
- Shear modulusPoisson
- Poisson ratio
name : str
Material name.
rho : float, list, pint.Quantity
Density (kg/m**3).
Input a list to make it random.
E : float, list, pint.Quantity
Young's modulus (N/m**2).
Input a list to make it random.
G_s : float, list
Shear modulus (N/m**2).
Input a list to make it random.
Poisson : float, list
Poisson ratio (dimensionless).
Input a list to make it random.
color : str
Can be used on plots.
Note that, to instantiate a ST_Material class, you only need to give 2 out of the following parameters: E
, G_s
,Poisson
.
Let’s consider that the Young’s Modulus is a random variable the follows a uniform distribution from \(208e9\) to \(211e9\) \(N/m^2\).
var_size = 5
E = np.random.uniform(208e9, 211e9, var_size)
rand_mat = srs.ST_Material(name="Steel", rho=7810, E=E, G_s=81.2e9)
# Random values for Young's Modulus
print(rand_mat["E"])
[2.09870978e+11 2.09622532e+11 2.08564528e+11 2.08840575e+11
2.08383344e+11]
You can return the random Materials created using the following command:
iter()
It returns a generator with the random objects. It consumes less computational memory and runs loops faster.
list(iter(rand_mat))
[Material(name="Steel", rho=7.81000e+03, G_s=8.12000e+10, E=2.09871e+11, color='#525252'),
Material(name="Steel", rho=7.81000e+03, G_s=8.12000e+10, E=2.09623e+11, color='#525252'),
Material(name="Steel", rho=7.81000e+03, G_s=8.12000e+10, E=2.08565e+11, color='#525252'),
Material(name="Steel", rho=7.81000e+03, G_s=8.12000e+10, E=2.08841e+11, color='#525252'),
Material(name="Steel", rho=7.81000e+03, G_s=8.12000e+10, E=2.08383e+11, color='#525252')]
You can pass one or all parameters as random (but remember the rule of given only 2 out of E
, G_s
,Poisson
).
Let’s see another example considering all parameters as random.
var_size = 5
E = np.random.uniform(208e9, 211e9, var_size)
rho = np.random.uniform(7780, 7850, var_size)
G_s = np.random.uniform(79.8e9, 81.5e9, var_size)
rand_mat = srs.ST_Material(name="Steel", rho=rho, E=E, G_s=G_s)
list(iter(rand_mat))
[Material(name="Steel", rho=7.79785e+03, G_s=8.00129e+10, E=2.10438e+11, color='#525252'),
Material(name="Steel", rho=7.80866e+03, G_s=8.10989e+10, E=2.10230e+11, color='#525252'),
Material(name="Steel", rho=7.84218e+03, G_s=8.02146e+10, E=2.09094e+11, color='#525252'),
Material(name="Steel", rho=7.81669e+03, G_s=8.06195e+10, E=2.10574e+11, color='#525252'),
Material(name="Steel", rho=7.78422e+03, G_s=8.13542e+10, E=2.08495e+11, color='#525252')]
ST_ShaftElement#
ST_ShaftElement
allows you to create random shaft element. It creates an object containing a generator with random instances of ShaftElement
.
The instantiation is the same than rs.ShaftElement
class. It has the same parameters and the same beam model and assumptions. The only difference is that you are able to select some parameters to consider as random and instantiate it as a list.
The parameters which can be passed as random are:
L
- Lengthidl
- Inner diameter of the element at the left positionodl
- Outer diameter of the element at the left positionidr
- Inner diameter of the element at the right positionodr
- Outer diameter of the element at the right position.material
- Shaft material
The selected parameters must be appended to is_random
list as string.
You can return the random shaft element created using the following command:
iter()
.
L : float, pint.Quantity, list
Element length.
Input a list to make it random.
idl : float, pint.Quantity, list
Inner diameter of the element at the left position.
Input a list to make it random.
odl : float, pint.Quantity, list
Outer diameter of the element at the left position.
Input a list to make it random.
idr : float, pint.Quantity, list, optional
Inner diameter of the element at the right position
Default is equal to idl value (cylindrical element)
Input a list to make it random.
odr : float, pint.Quantity, list, optional
Outer diameter of the element at the right position.
Default is equal to odl value (cylindrical element)
Input a list to make it random.
material : ross.material, list of ross.material
Shaft material.
Input a list to make it random.
n : int, optional
Element number (coincident with it's first node).
If not given, it will be set when the rotor is assembled
according to the element's position in the list supplied to
shear_effects : bool, optional
Determine if shear effects are taken into account.
Default is True.
rotary_inertia : bool, optional
Determine if rotary_inertia effects are taken into account.
Default is True.
gyroscopic : bool, optional
Determine if gyroscopic effects are taken into account.
Default is True.
shear_method_calc : str, optional
Determines which shear calculation method the user will adopt.
Default is 'cowper'
is_random : list
List of the object attributes to become random.
Possibilities:
["L", "idl", "odl", "idr", "odr", "material"]
Cylindrical shaft element with random outer diameter#
If you want to create a cylindrical element with random outer diameter, making sure both odl
and odr
are the same, input only odl
parameter.
The same logic is applied to inner diameter.
# Creating a cylindrical shaft element with random outer diameter and material.
var_size = 5
L = 0.25
i_d = 0.0
o_d = np.random.uniform(0.04, 0.06, var_size)
is_random = ["odl", "material"]
r_s0 = srs.ST_ShaftElement(
L=L,
idl=i_d,
odl=o_d,
material=rand_mat,
shear_effects=True,
rotary_inertia=True,
gyroscopic=True,
is_random=is_random,
)
list(iter(r_s0))
[ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.057122, odr=0.057122, material='Steel', n=None),
ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.041971, odr=0.041971, material='Steel', n=None),
ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.041351, odr=0.041351, material='Steel', n=None),
ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.044317, odr=0.044317, material='Steel', n=None),
ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.056775, odr=0.056775, material='Steel', n=None)]
Conical shaft element with random outer diameter#
If you want to create a conical element with random outer diameter, input lists for odl
ans odr
parameters.
# Creating a conical shaft element with random outer diameter and material.
var_size = 5
L = 0.25
idl = 0.0
idr = 0.0
odl = np.random.uniform(0.04, 0.06, var_size)
odr = np.random.uniform(0.06, 0.07, var_size)
is_random = ["odl", "odr", "material"]
r_s1 = srs.ST_ShaftElement(
L=L,
idl=idl,
odl=odl,
idr=idr,
odr=odr,
material=rand_mat,
shear_effects=True,
rotary_inertia=True,
gyroscopic=True,
is_random=is_random,
)
list(iter(r_s1))
[ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.054486, odr=0.060876, material='Steel', n=None),
ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.047353, odr=0.065821, material='Steel', n=None),
ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.050009, odr=0.061408, material='Steel', n=None),
ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.051292, odr=0.067379, material='Steel', n=None),
ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.049958, odr=0.06732, material='Steel', n=None)]
Creating a list of shaft elements#
Let’s see 2 examples of building rotor shafts:
a shaft with 5 shaft elements considered random
shaft_elements = [
ST_ShaftElement,
ST_ShaftElement,
ST_ShaftElement,
ST_ShaftElement,
ST_ShaftElement,
]
a shaft with 5 elements, being only the 3rd element considered as random. So we want;
shaft_elements = [
ShaftElement,
ShaftElement,
ST_ShaftElement,
ShaftElement,
ShaftElement,
]
First we create the deterministic shaft elements.
################ EXAMPLE 1 #################
# Creating 5 random shaft elements
from ross.materials import steel
L = 0.25
N = 5 # Number of elements
l_list = [L for _ in range(N)]
shaft_elements = [
srs.ST_ShaftElement(
L=l,
idl=0.0,
odl=np.random.uniform(0.04, 0.06, var_size),
material=steel,
shear_effects=True,
rotary_inertia=True,
gyroscopic=True,
is_random=["odl"],
)
for l in l_list
]
# printing
for i in range(N):
print("Element", i)
print(list(iter(shaft_elements[i])))
Element 0
[ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.05952, odr=0.05952, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.051499, odr=0.051499, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.053607, odr=0.053607, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.047568, odr=0.047568, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.045752, odr=0.045752, material='Steel', n=None)]
Element 1
[ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.059202, odr=0.059202, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.047588, odr=0.047588, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.052774, odr=0.052774, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.045902, odr=0.045902, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.041828, odr=0.041828, material='Steel', n=None)]
Element 2
[ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.045626, odr=0.045626, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.048818, odr=0.048818, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.048471, odr=0.048471, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.056042, odr=0.056042, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.047248, odr=0.047248, material='Steel', n=None)]
Element 3
[ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.047565, odr=0.047565, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.047785, odr=0.047785, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.042625, odr=0.042625, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.042906, odr=0.042906, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.040607, odr=0.040607, material='Steel', n=None)]
Element 4
[ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.046868, odr=0.046868, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.05086, odr=0.05086, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.057259, odr=0.057259, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.054234, odr=0.054234, material='Steel', n=None), ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.05546, odr=0.05546, material='Steel', n=None)]
################ EXAMPLE 2 #################
# Creating shaft elements
from ross.materials import steel
L = 0.25
i_d = 0.0
o_d = 0.05
N = 4 # Number of elements
l_list = [L for _ in range(N)]
shaft_elements = [
rs.ShaftElement(
L=l,
idl=i_d,
odl=o_d,
material=steel,
shear_effects=True,
rotary_inertia=True,
gyroscopic=True,
)
for l in l_list
]
shaft_elements
# Adding the random shaft element instance to the list
shaft_elements.insert(2, r_s0)
shaft_elements
[ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.05, odr=0.05, material='Steel', n=None),
ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.05, odr=0.05, material='Steel', n=None),
<ross.stochastic.st_shaft_element.ST_ShaftElement at 0x7f1bc73664a0>,
ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.05, odr=0.05, material='Steel', n=None),
ShaftElement(L=0.25, idl=0.0, idr=0.0, odl=0.05, odr=0.05, material='Steel', n=None)]
ST_DiskElement#
This class represents a random Disk element.
ST_DiskElement
allows you to create random disk element. It creates an object containing a generator with random instances of rs.DiskElement
.
The instantiation is the same than DiskElement
class. It has the same parameters and assumptions. The only difference is that you are able to select some parameters to consider as random and instantiate it as a list.
The parameters which can be passed as random are:
m
- massId
- Diametral moment of inertia.Ip
- Polar moment of inertia
The selected parameters must be appended to is_random
list as string.
You can return the random disk element created using the following command:
iter()
.
n: int
Node in which the disk will be inserted.
m : float, list
Mass of the disk element.
Input a list to make it random.
Id : float, list
Diametral moment of inertia.
Input a list to make it random.
Ip : float, list
Polar moment of inertia
Input a list to make it random.
tag : str, optional
A tag to name the element
Default is None
color : str, optional
A color to be used when the element is represented.
Default is '#b2182b' (Cardinal).
is_random : list
List of the object attributes to become random.
Possibilities:
["m", "Id", "Ip"]
All the values are following the S.I. convention for the units.
m = np.random.uniform(32.0, 33.0, var_size)
Id = np.random.uniform(0.17, 0.18, var_size)
Ip = np.random.uniform(0.32, 0.33, var_size)
is_random = ["m", "Id", "Ip"]
disk0 = srs.ST_DiskElement(n=2, m=m, Id=Id, Ip=Ip, is_random=is_random)
list(iter(disk0))
[DiskElement(Id=0.17634, Ip=0.32465, m=32.159, color='Firebrick', n=2, scale_factor=Firebrick, tag=None),
DiskElement(Id=0.17615, Ip=0.32739, m=32.818, color='Firebrick', n=2, scale_factor=Firebrick, tag=None),
DiskElement(Id=0.17734, Ip=0.32889, m=32.431, color='Firebrick', n=2, scale_factor=Firebrick, tag=None),
DiskElement(Id=0.17144, Ip=0.32967, m=32.443, color='Firebrick', n=2, scale_factor=Firebrick, tag=None),
DiskElement(Id=0.1735, Ip=0.32955, m=32.414, color='Firebrick', n=2, scale_factor=Firebrick, tag=None)]
From geometry DiskElement instantiation#
Besides the instantiation previously explained, there is a way to instantiate a ST_DiskElement with only geometrical parameters (for cylindrical disks) and the disk’s material, as we can see in the following code.
Use the classmethod ST_DiskElement.from_geometry
.
n: int
Node in which the disk will be inserted.
material: ross.Material, list of ross.Material
Disk material.
Input a list to make it random.
width: float, list
The disk width.
Input a list to make it random.
i_d: float, list
Inner diameter.
Input a list to make it random.
o_d: float, list
Outer diameter.
Input a list to make it random.
tag : str, optional
A tag to name the element
Default is None
is_random : list
List of the object attributes to become random.
Possibilities:
["material", "width", "i_d", "o_d"]
i_d = np.random.uniform(0.05, 0.06, var_size)
o_d = np.random.uniform(0.35, 0.39, var_size)
disk1 = srs.ST_DiskElement.from_geometry(n=3,
material=steel,
width=0.07,
i_d=i_d,
o_d=o_d,
is_random=["i_d", "o_d"],
)
list(iter(disk1))
[DiskElement(Id=0.58094, Ip=1.1125, m=60.476, color='Firebrick', n=3, scale_factor=Firebrick, tag=None),
DiskElement(Id=0.56419, Ip=1.0796, m=59.754, color='Firebrick', n=3, scale_factor=Firebrick, tag=None),
DiskElement(Id=0.63604, Ip=1.2201, m=63.587, color='Firebrick', n=3, scale_factor=Firebrick, tag=None),
DiskElement(Id=0.51379, Ip=0.98106, m=56.97, color='Firebrick', n=3, scale_factor=Firebrick, tag=None),
DiskElement(Id=0.47054, Ip=0.89673, m=54.295, color='Firebrick', n=3, scale_factor=Firebrick, tag=None)]
ST_BearingElement#
This class represents a random bearing element.
ST_BearingElement
allows you to create random disk element. It creates an object containing a generator with random instances of rs.BearingElement
.
The instantiation is the same than BearingElement
class. It has the same parameters and assumptions. The only difference is that you are able to select some parameters to consider as random and instantiate it as a list.
If you’re considering constant coefficients, use an 1-D array to make it random. If you’re considering varying coefficients to the frequency, use a 2-D array to make it random
The parameters which can be passed as random are:
kxx
- Direct stiffness in the x direction.cxx
- Direct damping in the x direction.kyy
- Direct stiffness in the y direction.cyy
- Direct damping in the y direction.kxy
- Cross coupled stiffness in the x direction.cxy
- Cross coupled damping in the x direction.kyx
- Cross coupled stiffness in the y direction.cyx
- Cross coupled damping in the y direction.
The selected parameters must be appended to is_random
list as string.
You can return the random disk element created using the following command:
iter()
.
n: int
Node which the bearing will be located in
kxx: float, 1-D array, 2-D array
Direct stiffness in the x direction.
cxx: float, 1-D array, 2-D array
Direct damping in the x direction.
kyy: float, 1-D array, 2-D array, optional
Direct stiffness in the y direction.
(defaults to kxx)
kxy: float, 1-D array, 2-D array, optional
Cross coupled stiffness in the x direction.
(defaults to 0)
kyx: float, 1-D array, 2-D array, optional
Cross coupled stiffness in the y direction.
(defaults to 0)
cyy: float, 1-D array, 2-D array, optional
Direct damping in the y direction.
(defaults to cxx)
cxy: float, 1-D array, 2-D array, optional
Cross coupled damping in the x direction.
(defaults to 0)
cyx: float, 1-D array, 2-D array, optional
Cross coupled damping in the y direction.
(defaults to 0)
frequency: array, optional
Array with the frequencies (rad/s).
tag: str, optional
A tag to name the element
Default is None.
n_link: int, optional
Node to which the bearing will connect. If None the bearing is
connected to ground.
Default is None.
scale_factor: float, optional
The scale factor is used to scale the bearing drawing.
Default is 1.
is_random : list
List of the object attributes to become stochastic.
Possibilities:
["kxx", "kxy", "kyx", "kyy", "cxx", "cxy", "cyx", "cyy"]
Bearing with random constant values for each coefficient:
# Building bearing elements and matching their coefficients.
var_size = 5
kxx = np.random.uniform(1e6, 2e6, var_size)
cxx = np.random.uniform(1e3, 2e3, var_size)
brg0 = srs.ST_BearingElement(n=0,
kxx=kxx,
cxx=cxx,
is_random=["kxx", "cxx"],
)
# set kxx and cxx again, if you want different coefficients for the next bearing
# it will get new random values.
# kxx = np.random.uniform(1e6, 2e6, var_size)
# cxx = np.random.uniform(1e6, 2e6, var_size)
brg1 = srs.ST_BearingElement(n=5,
kxx=kxx,
cxx=cxx,
is_random=["kxx", "cxx"],
)
list(iter(brg0))
[BearingElement(n=0, n_link=None,
kxx=[1728863.4131801394], kxy=[0],
kyx=[0], kyy=[1728863.4131801394],
cxx=[1899.8252151986867], cxy=[0],
cyx=[0], cyy=[1899.8252151986867],
frequency=None, tag=None),
BearingElement(n=0, n_link=None,
kxx=[1333325.5903531597], kxy=[0],
kyx=[0], kyy=[1333325.5903531597],
cxx=[1081.9618331789402], cxy=[0],
cyx=[0], cyy=[1081.9618331789402],
frequency=None, tag=None),
BearingElement(n=0, n_link=None,
kxx=[1216836.7111646465], kxy=[0],
kyx=[0], kyy=[1216836.7111646465],
cxx=[1964.7711232304057], cxy=[0],
cyx=[0], cyy=[1964.7711232304057],
frequency=None, tag=None),
BearingElement(n=0, n_link=None,
kxx=[1415232.3814475657], kxy=[0],
kyx=[0], kyy=[1415232.3814475657],
cxx=[1178.169733597559], cxy=[0],
cyx=[0], cyy=[1178.169733597559],
frequency=None, tag=None),
BearingElement(n=0, n_link=None,
kxx=[1017272.8848591695], kxy=[0],
kyx=[0], kyy=[1017272.8848591695],
cxx=[1696.0658539914496], cxy=[0],
cyx=[0], cyy=[1696.0658539914496],
frequency=None, tag=None)]
The coefficients could be an array with different values for different rotation speeds, in that case you only have to give a parameter ‘frequency’ which is a array with the same size as the coefficients array.
To make it random, check the example below:
kxx = [np.random.uniform(1e6, 2e6, var_size),
np.random.uniform(2.3e6, 3.3e6, var_size)]
cxx = [np.random.uniform(1e3, 2e3, var_size),
np.random.uniform(2.1e3, 3.1e3, var_size)]
frequency = np.linspace(500, 800, len(kxx))
brg2 = srs.ST_BearingElement(n=1,
kxx=kxx,
cxx=cxx,
frequency=frequency,
is_random=["kxx", "cxx"],
)
list(iter(brg2))
[BearingElement(n=1, n_link=None,
kxx=[1260527.92501607 2469613.38746566], kxy=[0, 0],
kyx=[0, 0], kyy=[1260527.92501607 2469613.38746566],
cxx=[1346.65672263 2424.22039485], cxy=[0, 0],
cyx=[0, 0], cyy=[1346.65672263 2424.22039485],
frequency=[500. 800.], tag=None),
BearingElement(n=1, n_link=None,
kxx=[1614108.87276582 2711212.21947759], kxy=[0, 0],
kyx=[0, 0], kyy=[1614108.87276582 2711212.21947759],
cxx=[1248.87733963 2123.34218695], cxy=[0, 0],
cyx=[0, 0], cyy=[1248.87733963 2123.34218695],
frequency=[500. 800.], tag=None),
BearingElement(n=1, n_link=None,
kxx=[1786280.07484952 2760164.64335148], kxy=[0, 0],
kyx=[0, 0], kyy=[1786280.07484952 2760164.64335148],
cxx=[1048.26691752 2981.73881762], cxy=[0, 0],
cyx=[0, 0], cyy=[1048.26691752 2981.73881762],
frequency=[500. 800.], tag=None),
BearingElement(n=1, n_link=None,
kxx=[1558769.90415474 2846545.56728008], kxy=[0, 0],
kyx=[0, 0], kyy=[1558769.90415474 2846545.56728008],
cxx=[1961.22461187 2256.12094697], cxy=[0, 0],
cyx=[0, 0], cyy=[1961.22461187 2256.12094697],
frequency=[500. 800.], tag=None),
BearingElement(n=1, n_link=None,
kxx=[1632005.09936429 2713570.273376 ], kxy=[0, 0],
kyx=[0, 0], kyy=[1632005.09936429 2713570.273376 ],
cxx=[1598.48476959 3048.93346808], cxy=[0, 0],
cyx=[0, 0], cyy=[1598.48476959 3048.93346808],
frequency=[500. 800.], tag=None)]
ST_Rotor#
This class will create several instances of rs.Rotor
class. The number of rotors to be created depends on the amount of random elements instantiated and theirs respective sizes.
To use this class, you only have to give all the already instantiated elements in a list format, as it follows.
shaft_elements : list
List with the shaft elements
disk_elements : list
List with the disk elements
bearing_seal_elements : list
List with the bearing elements
point_mass_elements: list
List with the point mass elements
tag : str
A tag for the rotor
rotor1 = srs.ST_Rotor(
shaft_elements,
[disk0, disk1],
[brg0, brg1],
)
Running the simulation#
After you verify that everything is fine with the rotor, you should
run the simulation and obtain results.
To do that you only need to use the one of the .run_()
methods available.
For now, STOCHASTIC ROSS has only a few stochastic analysis as shown below.
Obtaining results#
These are the following stochastic analysis you can do with the program:
.run_campbell()
- Campbell Diagram.run_freq_response()
- Frequency response.run_unbalance_response()
- Unbalance response.run_time_response()
- Time response
Plotting results#
As it has been spoken before, STOCHASTIC ROSS presents results, not deterministic as ROSS does, but in the form of expectation (mean values) and percentiles (or confidence intervals). When plotting these analysis, it will always display the expectation and you are able to choose which percentile to plot.
To return a plot, you need to enter the command .plot()
rigth before the command the run an analysis:
.run_something().plot()
.plot()
methods have two main arguments:
percentile : list, optional
Sequence of percentiles to compute, which must be between
0 and 100 inclusive.
conf_interval : list, optional
Sequence of confidence intervals to compute, which must be between
0 and 100 inclusive.
Plot interaction#
You can click on the legend label to ommit an object from the graph.
Campbell Diagram#
This function will calculate the damped natural frequencies for a speed range.
speed_range : array
Array with the desired range of frequencies.
frequencies : int, optional
Number of frequencies that will be calculated.
Default is 6.
frequency_type : str, optional
Choose between displaying results related to the undamped natural
frequencies ("wn") or damped natural frequencies ("wd").
The default is "wd".
To run the Campbell Diagram, use the command .run_campbell()
To plot the figure, use .run_campbell().plot()
Notice that there’re two plots. You can plot both or one of them:
damped natural frequency vs frequency;
use
.run_campbell().plot_nat_freq()
log dec vs frequency
use
.run_campbell().plot_log_dec()
samples = 31
speed_range = np.linspace(0, 500, samples)
camp = rotor1.run_campbell(speed_range)
fig1 = camp.plot_nat_freq(conf_interval=[90])
fig1.show(renderer="notebook")